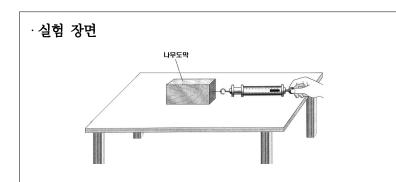
2007학년도 중등교사 신규임용 후보자 선정 경쟁시험

수험번호:()	성 명:()
0	0	0	0
(2)교시 물 리 (25)	문항 (80)점	작성시간 (150)분 감독관 확인	0
○ 문답지 전체 면 수가 맞는지 확인하시오. ○ 문답지 모든 면의 상단 해당란에 수험번호와 ○ 지워지거나 번지지 않는 흑색 필기구를 사용하 ○ 답안을 수정할 때에는 두 줄(=)을 긋고 수 ※ 다음의 경우에는 채점하지 않고 0점으로 차 ·연필로 작성된 문항 ·수정테이프나 수정액을 사용하여 수정된 문 ·개인 정보가 노출되어 있거나 불필요한 표시가	여 답안을 작성하시오 ·정할 내용을 쓰시오. 러리합니다. 항	3. 다음 2가지 사례는 과학의 본성의 전 (가) 1956년까지는 생물 교사들 (24쌍)의 염색체가 있다고 7 사람 체세포의 염색체 수기 밝혀졌다. (나) 핵융합에 의한 에너지 생산 일어날 수 있는 극초고온 이는 현재의 기술로는 불가	이 사람의 체세포에 48개 나르쳤다. 그러나 1956년에 나 46개(23쌍)라는 사실이 산이 가능하려면 핵융합이 상태를 만들어야 하는데,
 ** 각 문항에 대한 답은 문답지의 답란에 맞게 쓰시오. 1. 명왕성은 그동안 태양계 행성으로 분류 국제천문연맹(IAU)은 표결을 통해 명의 재분류하였다. 이러한 과학지식 형성과정 이전의 과학철학이 지니는 한계와 관련에서 이러한 사례를 하나 찾아 설명하시오 ㆍ 설명 : ㆍ 사례 : 	류되어 왔으나, 최근 왕성을 왜소행성으로 의 특징을 쿤(Kuhn 지어 설명하고, 과학	들이 상온에서 핵융합 반응지만, 다른 학자들이 동일한 여 처음 연구 결과를 발표한을 철회해야 했다. 각 사례가 과학의 본성 중 어느 측	을 성공시켰다고 보고하였 한 연구 결과를 얻지 못하 한 학자들은 자신들의 주장 면에 가장 가까운지 쓰고, 그
2. 다음은 에탄올의 끓는점을 측정하는 스실험 안내가 끝나고 학생들이 모둠별때의 대화이다. 학생 A: 얘들아. 빨리 실험하자. 학생 B: 난 어떻게 하는 건지 잘 모르? 학생 A: 에탄올을 물중탕으로 가열하면서학생 C: 그래? 그럼 네가 잘 하니까 너리가 했다가 망치면 어떻게 해학생 D: 그래, 그래. 그게 좋겠다. 협동학습의 특징을 반영하여, 위 대화에실험 수업의 문제점과 이를 개선하기계획을 쓰시오. [4점] · 위 실험 수업의 문제점: · 개선된 수업 계획:	별로 실험을 시작한 겠는데. 서 온도를 읽는 거야. 기가 해 봐. 괜히 우	4. '빛의 굴절'을 주제로 한 수업을 같은 질문을 하였다. 교사 : 김영희, 굴절이 뭐죠? 얼른 김영희 : 굴절이란 꺾이는 것을 달 교사가 한 질문의 문제점을 1기 교사의 질문을 학생들의 발산적 시 으로 바꿔 쓰시오. [3점]	른 대답해 봐요. 말합니다. 나지 더 쓰고, 위에 제시된 나고를 유발할 수 있는 질문


수험번호:()	성 명	:()
0 ()		0			0	
						KICE DE	국교육과정평가원 A INSTITUTE OF CURRICULUM & EVALUATION
5. 다음 학생들의 대화 내용을 읽고 물음에 답혀	시오.	· 수업계획	:				
학생 A: (1) 튀김을 할 때 튀김옷을 입히 맛있게 하려는 것 말고 뭔가 다 거야. 튀김옷 속에 있는 야채 같은 려는 걸 거야. 학생 B: 튀김옷을 입히는 것은 기름이 튀 거야. 튀김을 하고 나서 벽에 기 있는 것을 보면 기름이 튀는 것임 학생 C: 정말 기름이 튀는 걸까? (2) 물은	른 이유가 있을은 것을 잘 익히지 않게 하려는름이 많이 붙어에 틀림없어.	7. 뷰렛 끝에서 간을 측정하 간 측정하기	하여 중력기	가속도를	알아내기	위한 '둘	: 데 걸린 시 물방울 낙하시
기름은 이보다 훨씬 높은 온도에서 (3) 물이 먼저 증발할 텐데 왜 기특	끓지. 그러니까,		실험장치를 두 채운다.	- 그림과	같이 설치	하고, 뷰렛	빗에 물을 가
학생들의 대화 중 (1), (2), (3)이 제7차 3 4 가지 목표 중 어느 것과 관련이 가장 깊 (단, 하나의 목표는 한 번만 씀.) [3점] (1) (2) (3) 6. 다음은 '자석에 의한 전류의 발생'을 탐구하는 과정 1. 솔레노이드와 검류계를 연결한다.	은지 각각 쓰시오.	과정 3. 1 호 과정 4. (닿는 순간 () 방울이 달 한 방울이	다음 방울 털어지는 1 떨어지는 물방울이 1	물이 떨어져 테 걸리는 데 걸리는 떨어진 거리	시게 한다. 시간을 10 - 시간을 ' 리를 자유닉	으로 나누어 알아낸다. 낙하운동에서
과정 2. 막대 자석의 N극을 솔레노이드 코일 멀리할 때 검류계 바늘의 움직임을		과정 5. 건	영확한 측정	값을 구하	기 위해 2^	~4의 과정·	을 반복한다.
과정 3. 막대 자석이 코일 속에 정지해 있 바늘의 움직임을 관찰한다.		학생들이	구한 중력	기속도 집	값은 다음	표와 같았	았다. (단위: 勳)
과정 4. 자석의 속력을 바꾸어 가면서 검투 임을 관찰한다. 과정 5. 관찰 결과를 표로 나타내고 해석형		1회 9.7	2회 9.5	3회 9.4	4회 9.2	5회 8.7	6회 8.3
과정 6. 이 해석을 바탕으로 결론을 내리. 지식으로 일반화한다.		구한 중력기 쓰고, 개선					h야 할 변인을 Σ. [3점]
제7차 과학과 교육과정의 통합탐구과정 중에서 문제 인식 외에 명시되지 않은 것을 2학교 1학년 '전자기 유도'와 관련하여 문제위한 수업 계획을 3줄 이내로 쓰시오. [3점]	2개 더 쓰고, 고등 인식을 가르치기	· 통제해야	,		-정 내용 :		
·명시되지 않은 탐구과정 요소:	,						

관리번호

물 리(총 10면 중 2 면)

수험번호:()	성 명:()
0	0		\circ	0

8. 다음은 접촉 면적에 따른 마찰력을 알아보기 위한 실험 (그림 참조)에서 학생들이 얻은 자료와 내린 결론이다.

·접촉 면적에 따른 최대 정지마찰력

(단위: N)

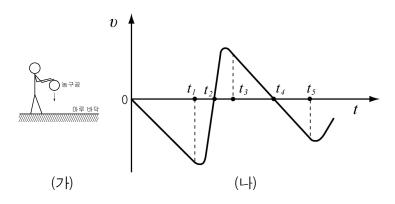
접촉 면적(cm²)	1회	2회	3회	4회	5회	평균
100	3.5	3.2	3.1	3.5	3.3	3.32
200	3.4	3.3	3.2	3.6	3.2	3.34
400	3.5	3.3	3.6	3.5	3.3	3.44

· 학생들이 내린 결론

학생 A: 접촉 면적이 커질수록 최대 정지마찰력이 커진다는 것을 알 수 있다.

학생 B : 별 차이가 없는 것 같지만 추가 실험을 더 해 봐야

할 것 같다.


위 자료를 활용하여 결론을 도출하는 학생들을 관찰하여 과학적 태도를 평가하려고 다음과 같은 점검표를 만들었다.

평가 항목	평가 결과
1. 평균값의 차이가 의미있는 크 기인지 따져 보는가?	예 () 아니오()
2. 이론값과 다르게 나왔을 때 책이나 자료를 찾아보는가?	예 () 아니오()

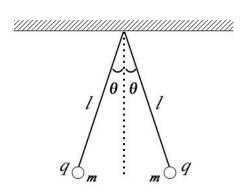
위 점검표를 통하여 평가하고자 하는 과학적 태도 요소를 제7차 과학과 교육과정 해설에 근거하여 쓰고, 학생 B가 추가로 해 볼 수 있는 실험을 고안하여 제시하시오. [4점]

· 태노 요소 .	
·추가 실험:	

9. 그림 (가)는 어떤 높이에서 잡고 있던 농구공을 단단한 마루바닥을 향해 가만히 놓은 것을 나타내고, 그림 (나)는 시간t에 따른 이 농구공의 속도 v를 나타낸 것이다. 그림 (나)에서 $0^{\sim}t_1$ 구간과 $t_3^{\sim}t_5$ 구간의 그래프는 직선이고, $t_1^{\sim}t_3$ 구간의 그래프는 직선이 아니다.

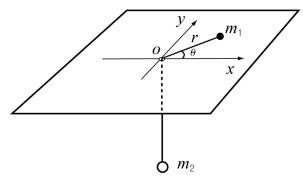
이 농구공이 바닥에서 다시 튀어 오른 후 최고점에 도달한 시 각을 찾으시오. 또한, t_3 \sim t_5 의 직선 구간에서 농구공의 가속도를 구하고, 이 구간에서 속도 v(t)를 g, t, t_4 로 나타내시오. (단, 공기 저항은 무시하고, 중력가속도는 g임.) [3점]

·튀어 오른 후 최고점에 도달한 시기	ł:
· t ₃ ~ t ₅ 에서 농구공의 가속도 :	
· t ₃ ~ _{t5} 에서 농구공의 속도 _V (t):	


10. 세 개의 축퇴되지 않은 에너지 고유치 - μ B, 0,+ μ B 만을 가질 수 있는 스핀 1인 입자가 절대온도 T인 열원과 열적 평형 상태에 있다. 이 입자의 분배함수와 평균에너지를 구하시오.
 (단, Boltzmann 상수는 k 임.) [3점]

·분배함수 :

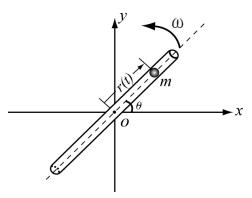
·평균에너지:


수험번호:()	성 명:()

11. 그림은 같은 전하량 q로 대전된 질량 m의 동일한 두 입자가 각각 일정한 길이 I의 줄에 매달려 평형 상태에 있는 것을 나타낸다. 줄이 연직선과 이루는 각 Θ 는 충분히 작아서, $\tan\Theta \simeq \sin\Theta \simeq \Theta$ 의 근사식을 쓸 수 있다.

이때 각 Θ 를 입자의 질량 m과 줄의 길이 I, 중력가속도 g 등으로 나타내시오. (단, 줄의 질량과 두 입자 사이의 만유인 력은 무시하고, 공기의 유전율은 ϵ_g 라 함.) [3점]

12. 그림과 같이 질량이 m₁인 물체와 질량이 m₂인 물체가 일정한 길이 /의 줄로 원점(∅)에 있는 작은 구멍을 통하여 연결되어 운동하고 있다. 질량 m₁인 물체는 무한 수평면(xy 평면) 위의 위치 (r,θ)인 곳에서 운동하고 있고, 질량 m₂인물체는 아래 방향으로 일정한 중력가속도 g를 받으며 상하 운동하고 있다(0<r<1).

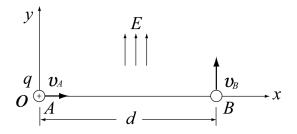

두 물체의 운동을 기술하는 라그랑지안 $L(r,\theta,\dot{r},\dot{\theta})$ 을 구하고, 운동방정식을 유도하시오. (단, $\dot{r}=\frac{dr}{dt},\,\dot{\theta}=\frac{d\theta}{dt}$ 이고, 줄의 질량과 모든 마찰은 무시함.) [4점]

·라그랑지안:

·운동방정식 :

수험번호:()	성 명:()
0	\bigcirc		\circ	\bigcirc	

13. 그림과 같이 질량 m 인 물체가 긴 관(pipe) 속에서 미 μ 러지며 운동하고 있다. 관은 원점 o 를 중심으로 일정한 각속도 ω 로 수 평면(xy 평면)에서 회전하고 있으며, 시간 t=0일 때 물체는 v_0 의 속력으로 원점을 지난다.

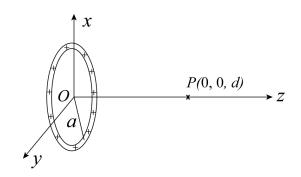


시간 t(>0)에서 원점으로부터 물체의 거리 r(t)에 대한 운동 방정식과 관 속에서의 r(t)를 구하시오. (단, 물체와 관 사이의 마찰은 무시함.) [3점]

·운동방정식 :

·물체의 거리 r(t) :

14. 그림과 같이 y축 방향으로 크기가 E인 균일한 전기장이 있다. 어느 순간에 질량 m이고 양전하 q인 입자 A가 x축 방향으로 원점 O를 V_A 의 속력으로 통과한다. 같은 시각에 x축위의 x=d인 곳에서 전하를 따지 않은 입자 B가 y축 방향으로 V_B 의 속력으로 움직이고 있다.

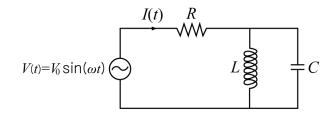

중력을 무시할 때, 두 입자가 충돌하기 위해 입자 B가 가져야 할 속력 V_B 를 구하시오. 또한 두 입자가 충돌할 때까지 전기장이 입자 A에 해 준 일을 구하시오. [3점]

·입자 B의 속력 V_R :

·입자 A에 해 준 일 :

수험번호 : ()	성 명:()
0	\circ		\bigcirc	0

15. 그림은 반지름이 a이고 원점을 중심으로 xy 평면에 고정된 가느다란 고리에 총 전하량 Q인 양전하가 고르게 분포되어 있는 것을 나타낸다.


P 점을 (0, 0, d)라 할 때 P점에서의 전위를 구하시오. 질량이 m이고 양전하 q인 입자를 P점에 정지상태로 놓으면 전하 q는 Z축을 따라 운동을 하게 된다. 고리로부터 무한히 먼 곳에서 전하 q의 속력을 구하시오. (단, 공기의 유전율은 ϵ_0 라 하고, 공기저항과 중력은 무시함.) [3점]

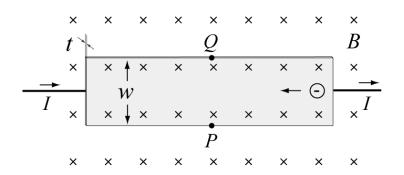
· P 점에서의 전위 :

·무한히 먼 곳에서 전하 q의 속력:

16. 그림과 같이 저항 R, 인덕턴스 L 인 인덕터와 전기 용량 C인 축전기로 구성된 회로에 교류 전압

 $V(t) = V_0 \sin(\omega t)$ ($V_0 \neq 0$)가 가해지고 있다.

이 회로의 임피던스 크기 $\mid Z \mid$ 와 정상 상태(steady state)의 전류의 진폭 I_0 을 구하고, I_0 = 0이 될 전기용량 C를 구하시오. [3점]

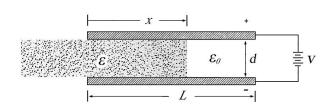

·임피던스의 크기 | Z | :

·전류의 진폭 I_0 :

 $\cdot I_0$ = 0이 될 전기용량 C:

수험번호 : ()	성 명:()
\circ	\bigcirc		\bigcirc	\bigcirc

17. 그림과 같이 지면에 수직 방향으로 들어가는 균일한 자기장 B가 있다. 이 자기장에 수직으로 놓여 있는 폭 w, 두께 t인 긴 구리판에 전류 I가 오른쪽으로 흐르고 있다.



이 구리판의 단위 부피당 전하 운반자(charge carriers) 수를 n, 전하 운반자의 전하량을 -e(e>0) 라 하자. <u>정상</u> <u>상태에서</u> 두 점 P, Q 중 전위가 높은 곳과 그 이유를 쓰시오. 또한, 두 점 P, Q사이의 전위차 ΔV 를 구하시오. [4점]

·전위가 높은 곳과 그 이유:

·전위차 ΔV :

18. 평행한 두 금속판 (길이 L, 폭 $_W$, 간격 $_d$)으로 만들어진 축전기속에 유전체판(길이 $_L$, 폭 $_W$, 두께 $_d$, 유전율 $_\epsilon$)이 채워져 있었다. 두 금속판은 전지에 의하여 전위차 $_V$ 로 유지되고 있다. 그림은 유전체판이 길이($_L$) 방향으로 당겨져, 길이 $_X$ 만큼 금속판 사이에 남아 있는 것을 나타내고 있다.

남아 있는 길이 $_X$ 가 $\frac{L}{2}$ 일 때 축전기에 저장된 전기에너지를 계산하고, 이 위치($_X=\frac{L}{2}$)에서 유전체판을 살며시 놓아 유전체판이 $\frac{L}{4}$ 의 거리만큼 움직였을 때 유전체판의 운동에너지를 계산하시오. (단, 공기의 유전율은 $_{0}$ 라 하고, 금속판과 유전체판 사이의 마찰력, 중력, 축전기의 가장자리 효과는 무시함.) [4점]

 $\cdot_X = \frac{L}{2}$ 일 때 축전기의 전기에너지 :

 $\cdot \frac{L}{4}$ 의 거리만큼 움직였을 때 유전체판의 운동에너지 :

수험번호 : ()	성 명:()
0	\circ		0	\circ

19. 균일한 전기장 $\overrightarrow{E}_0 = E_0 \hat{z}$ 이 있는 공간에 반지름이 a인 대전된 도체구를 두었다. 도체구의 중심을 구면좌표계의 원점으로 잡으면 도체구 외부의 전위는

$$V(r,\theta) = \frac{A}{r} - E_0 r \cos \theta + \frac{E_0 a^3}{r^2} \cos \theta \qquad (r \ge a)$$

로 주어진다고 하자. 여기서 A는 상수이다. $V(r,\Theta)$ 로부터 도체구 외부에서의 전기장 \overrightarrow{E} 와 도체구 표면에서의 총 전하량 Q를 계산하시오.

(단, $\vec{\nabla}\psi = \hat{r}\frac{\partial\psi}{\partial r} + \hat{\theta}\frac{1}{r}\frac{\partial\psi}{\partial\theta} + \hat{\varphi}\frac{1}{r\sin\theta}\frac{\partial\psi}{\partial\varphi}$ 이고, 공기의 유전율은 ε_o 라 함.) [3점]

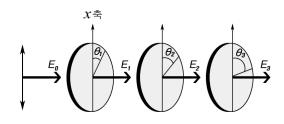
·도체구 외부의 전기장 :

·총 전하량 :

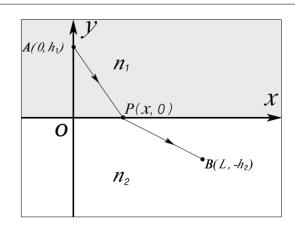
20. 어떤 입자의 파동함수가 3차원 구면좌표계에서

$$\psi(r,\Theta,\Phi) = Cr \exp\left[-\frac{r}{2a}\right]$$

로 주어진다고 하자. 여기서, a는 보어(Bohr) 반지름, C는 양의 실수이다. 이 파동함수를 규격화시키는 C를 구하시오. (참 a: $\int_{0}^{\infty} x^{n}e^{-x}dx = n!$ 임.) [3점]


21. 어떤 물리계의 해밀토니안(Hamiltonian) 연산자가 $H = \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix}$ 로 표현된다. α 는 에너지의 차원을 갖는 양의 상수이다. 이 연산자에 대한 두 개의 고유치(eigenvalue) 및 그에 해당하는 각각의 규격화된 고유벡터(eigenvector)를 구하시오. 또한, 상태 $|\Psi\rangle=\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 의 에너지를 측정할 때 기대치를 계산하는 과정을 보이고 그 값을 구하시오. [3점]

·고유치와 고유벡터:


·기대치의 계산 과정과 값:

수험번호:()	성 명	:()
0	\bigcirc			\circ	\bigcirc	

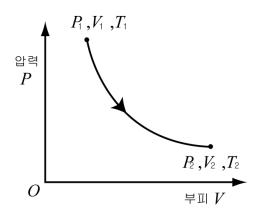
22. 그림과 같이 세 개의 선편광기가 일렬로 정렬되어 있다. 선편광기의 투과축 방향은 x축에 대해 $\theta_i \ (i=1,2,3)$ 의 각도로 배열되어 있다.

x축과 평행하게 선편광된 전기장이 E_0 의 진폭으로 왼쪽에서 입사하여 세 개의 선편광기를 투과한 후의 투과율을 θ_i 의 함수로 구하고, $\theta_1=\frac{\pi}{4},\ \theta_2=\frac{\pi}{2},\ \theta_3=\frac{3\pi}{4}$ 일 때의 투과율을 계산하시오. [3점]

광선이 점 A에서 경계점 P를 지나서 점 B까지 진행하는 시간을 구하고, 또 진행 시간이 최소가 되는 조건을 구하시오. 이 조건을 이용하여 $h_2=0$ 이 되는, 즉 전반사가 일어나기 시작하는 점 P(x,0)의 x 값을 n_1, n_2, h_1 을 사용하여구하시오. (단, $n_1>n_2$ 이며, 0<x<L임.) [3점]

·광선이 진행하는 시간 :

·시간이 최소가 되는 조건 :


·전반사가 일어나기 시작하는 값 x:

23. 그림과 같이 굴절률이 n_1 인 매질의 한 점 $A(0,h_1)$ 에서 나온 광선이 굴절률이 n_2 인 매질과의 임의의 경계점 P(x,0)를 지나서 굴절률이 n_2 인 매질의 한 점 $B(L,-h_2)$ 로 진행한다고 하자.

수험번호:() 성명:()

KICE 한국교육과정평가원

24. 그림은 n몰의 단원자 이상기체를 이용한 열기관의 작동 과정 일부를 나타내는 압력-부피 그래프이다. 압력, 부피, 절대온도가 각각 P1, V1, T1인 처음 상태에서 P2, V2, T2인 상태로부피가 늘어나는 동안 이 기체는 PV2 = K(K는 상수)를 만족한다. 이 과정에서 기체가 외부에 한 일 W, 방출한 열, 엔트로피 변화 ΔS를 T1, T2의 함수로 구하시오. (단, 기체상수는 R임.) [3점]

 $\cdot W$:

·방출한 열 :

 $\cdot \Delta S$:

25. 가속기 속에서 빛의 속력 c에 가까운 속력 v로 움직이는 양성자의 드 브로이 물질파 파장을 λ 라 하자. 이 양성자의 운동에너지와 물질 파의 군속도(group velocity) v_g 를 드 브로이 파장 λ 의 함수로 구하시오. (단, $E = \sqrt{p^2c^2 + m^2c^4} = \frac{mc^2}{\sqrt{1-v^2/c^2}}$ 이고, 양성자의 정지 질량은 m, 플랑크 상수는 h로 함.) [3점]

·운동에너지:

·군속도 V_g :

- 수고하셨습니다 -